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Abstract : C-glycosides are synthesized in five steps starting from ~-C-glycosylaldehydes 1 and 

2. The key step is a Pd(O)-catalyzed alkylation that leads regio and stereoselectively to exotic 

compounds by formation of C-C and C-N bonds. © 1997 Published by Elsevier Science Ltd. 

C-glycosides are an important class of  compounds which have raised frantic efforts by chemists and 

biochemists 1. They are important building blocks in the synthesis of  natural products 2 and carbohydrate 

biological probes which are inert to O-glycosidic bond cleavage by glycosidases. 1 Several methods for their 

preparation have been developed 1 but few of them use the potential of a transition metal, l, 3 As part of an 

ongoing program in palladium catalyzed alkylations, 4 we wish to report a general synthesis of functionalized C- 

glycosides. In connection with our studies towards the synthesis of ambruticin, 5 we recently developed a 

methodology to afford [~-C-glycosylaldehydes, 6 which are potential precursors of C-glycosides. Our strategy, 

described in Scheme 1 starts from [3-C-glycosylaldehydes 1 or 2. The allylic compounds 3 reacted with 

several nucleophiles to give the C-glycosides 4. 
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The allylic compounds were synthesized in five steps as illustrated in Scheme 2. The aldehydes 7 were treated 

with an excess of the Grignard reagent of trimethylsilylacetylene in diethyl ether in the presence of anhydrous 

magnesium bromide 8 at low temperature to give two diastereomers 9. 
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Desilylation followed by partial hydrogenation gave the allylic alcohols in high yields. The Pd(0) lov ing  group 

has been introduced either by treatment with 2,4-dichlorobenzoyl chloride to give 7 and 9 or ethylchloroformate 

to give 8. 
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7 R = R' = OBn Z -- CO-2,4-CI2C6H 3 
8 R = R' = OBn Z = CO2Et 
9 R = H, R' = OtBu Z = CO-2,4-C12C6H 3 

(a) MgBr 2 8eq, Et20, then MeoSiCCMgBr 4eq, -30°C, 41-73%. (b) K2CO3, MeOH, rt, 99%. (c) Pd Lindlar, quinoline, 
AcOEt, H 2, rt, 97%. (d) CICO-2,4-CI2C6H3 or CICO2Et, pyridine, CH2CI2, 0°C-n, 80-99%. 

Scheme 2 

The alkylation reactions were easily carried out in tetrahydrofuran at room temperature. The Pd(dppe)2 catalyst 

(10-20% mol.) was first generated by the addition of the diphosphine ligand to Pd(OAc)2. To a solution of this 

catalyst and the allylic substrate in tetrahydrofuran at room temperature was added the desired nucleophile as its 

sodium salt anion. The palladium-catalyzed reaction was first examined for the anions derived from dimethyl 

malonate (Table 1, entries 1,2) and ethyl nitroacetate (Table I, entries 3,4). In both cases, for the tetra-O-benzyl 

7 and the dideoxy 9, the corresponding C-glycosides 4a-4d were obtained in good yield. This SN2' reaction 

was cleanly regio- and stereoselective. The structure of the C-glycosidic products and especially the E- 

stereochemistry of the double bond were confirmed by proton and carbon NMR. These results suggest that the 

reaction proceeds through a common transient intermediate, a palladium x-allyl complex (Scheme 3) 10. The 

total regioselectivity is in favor of addition of the nucleophile on the terminal carbon atom, C3. The E- 

stereoselectivity observed in those reactions arises from the syn rc-allylic intermediate which is more stable. 
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This reaction was further exploited in the case of the tetra-O-benzyl compound 7 with the use of 

(phenylsulfonyle)acetonitrile (entry 5) and a Schiff phosphonic base 11 (entry 6). The resulting C-glycosides ,le 
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and 4f were isolated after chromatography in 44 to 58 % yield (Table 1). The formation of a C-N bond was 

also realized by the addition of benzylamine (entry 7) to tetra-O-benzyl 8. 

Table 1. Palladium catalyzed reaction of aUylic C-glycosides 3 

Entry Substrate Nucleophile Product Yield 
(%) 

/CO2Me 
1 a 7 NaCH 4a 7112 

NCO2Me 

2 a 9 NacH/CO2Me 4b 55 c 

\CO2Me 

NO2 
3 b 7 NaCH 4C 48 

\CO2Et 

NO2 
4 a 9 NaCH 4d 6512 

\CO2Et 

/CN 
5 b 7 NaCH 

\so2Ph 

pit 

6 a 7 NaCH t'N ~ Ph 

o//P,-- OEt 
xOE t 

4e 58 

4f 44 d 

7 a 8 H2N ~ Ph 4g 4412 

(a) 10% Pd(dppe)2 (b) 20% Pd(dppe)2 (c) and 21% of recovery starting material 
(d) and 39% of recovery starting material 

In summary, a new and simple method for the synthesis of functionalized 13-C-glycosides has been developed 

from 13-C-glycosylaldehydes using g-allyl palladium chemistry. 
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